您现在的位置是: 首页 > 高考动态 高考动态

高考数学思想方法总结,高考数学思想方法

tamoadmin 2024-06-09 人已围观

简介1.中学数学中几种常用的数学思想方法2.高中数学的四大解题思想?满意采纳3.高中做竞赛或者其他题所用到的数学思想有哪些4.高中数学学习技巧。5.高考数学大题的解题技巧及解题思想高中数学思想方法有7种,内容如下:1、函数与方程的思想函数是高中代数内容的主干,函数思想贯穿于高中代数的全部内容,函数思想是对函数内容在更高层次上的抽象、概括与提炼,是从函数各部分内容的内在联系和整体角度来考虑问题,研究问题

1.中学数学中几种常用的数学思想方法

2.高中数学的四大解题思想?满意采纳

3.高中做竞赛或者其他题所用到的数学思想有哪些

4.高中数学学习技巧。

5.高考数学大题的解题技巧及解题思想

高考数学思想方法总结,高考数学思想方法

高中数学思想方法有7种,内容如下:

1、函数与方程的思想

函数是高中代数内容的主干,函数思想贯穿于高中代数的全部内容,函数思想是对函数内容在更高层次上的抽象、概括与提炼,是从函数各部分内容的内在联系和整体角度来考虑问题,研究问题和解决问题。

函数和方程、不等式是通过函数值等于零、大于零或小于零而相互关联的,它们之间既有区别又有联系。函数与方程的思想,既是函数思想与方程思想的体现,也是两种思想综合运用的体现,是研究变量与函数、相等与不等过程中的基本数学思想。

2、数形结合的思想

数学研究的对象是数量关系和空间形式,即“数”与“形”两个方面。“数”与“形”两者之间并不是孤立的,而是有着密切的联系。数量关系的研究可以转化为图形性质的研究,反之,图形性质的研究可以转化为数量关系的研究,这种解决数学问题过程中“数”与“形”相互转化的研究策略,即是数形结合的思想。

3、分类与整合的思想

高考将分类与整合的思想放在比较重要的位置,并以解答题为主进行考查,考查时要求考生理解什么样的问题需要分类研究,为什么要分类,如何分类以及分类后如何研究与最后如何整合。

特别注意引起分类的原因,我们必须相当熟悉,有些概念就是分类定义的,如绝对值的概念、整数分为奇数偶数等,有些运算法则和公式是分类给出的,例如等比数列的求和公式就分为q=1和q≠1两种情况,对数函数的单调性就分为a>1,0<a<1,此外,图形位置的相对变化也会引起分类等。<p="">。

4、化归与转化的思想

将未知解法或难以解决的问题,通过观察、分析、类比、联想等思维过程,选择运用恰当的'数学方法进行变换,化归为在已知知识范围内已经解决或容易解决的问题的思想叫做化归与转化的思想。化归与转化思想的实质是揭示联系,实现转化。

转化有等价转化和非等价转化。等价转化前后是充要条件,所以尽可能使转化具有等价性;在不得已的情况下,进行不等价转化,应附加限制条件,以保持等价性,或对所得结论进行必要的验证。

5、特殊与一般的思想

由特殊到一般,由一般到特殊,是人们认识世界的基本方法之一。数学研究也不例外,由特殊到一般,由一般到特殊的研究数学问题的基本认识过程,就是数学研究中的特殊与一般的思想。

6、有限与无限的思想

函数是对运动变化的动态事物的描述,体现了变量数学在研究客观事物中的重要作用。导数是对事物变化快慢的一种描述,并由此可进一步处理和解决函数的增减、极大、极小、最大、最小等实际问题,是研究客观事物变化率和最优化问题的有力工具。

7、或然与必然的思想

随机现象有两个最基本的特征,一是结果的随机性,即重复同样的试验,所得到的结果并不相同,以至于在试验之前不能预料试验的结果;二是频率的稳定性,即在大量重复试验中,每个试验结果发生的频率“稳定”在一个常数附近。

中学数学中几种常用的数学思想方法

高考试题主要从以下几个方面对数学思想方法进行考查:

① 常用数学方法:配方法、换元法、待定系数法、数学归纳法、参数法、消去法等;

② 数学逻辑方法:分析法、综合法、反证法、归纳法、演绎法等;

③ 数学思维方法:观察与分析、概括与抽象、分析与综合、特殊与一般、类比、归纳和演绎等;

④ 常用数学思想:函数与方程思想、数形结合思想、分类讨论思想、转化(化归)思想等。

数学思想方法与数学基础知识相比较,它有较高的地位和层次。数学知识是数学内容,可以用文字和符号来记录和描述,随着时间的推移,记忆力的减退,将来可能忘记。而数学思想方法则是一种数学意识,只能够领会和运用,属于思维的范畴,用以对数学问题的认识、处理和解决,掌握数学思想方法,不是受用一阵子,而是受用一辈子,即使数学知识忘记了,数学思想方法也还是对你起作用。

数学思想方法中,数学基本方法是数学思想的体现,是数学的行为,具有模式化与可操作性的特征,可以选用作为解题的具体手段。数学思想是数学的灵魂,它与数学基本方法常常在学习、掌握数学知识的同时获得。

可以说,“知识”是基础,“方法”是手段,“思想”是深化,提高数学素质的核心就是提高学生对数学思想方法的认识和运用,数学素质的综合体现就是“能力”。

为了帮助学生掌握解题的金钥匙,掌握解题的思想方法,本书先是介绍高考中常用的数学基本方法:配方法、换元法、待定系数法、数学归纳法、参数法、消去法、反证法、分析与综合法、特殊与一般法、类比与归纳法、观察与实验法,再介绍高考中常用的数学思想:函数与方程思想、数形结合思想、分类讨论思想、转化(化归)思想。最后谈谈解题中的有关策略和高考中的几个热点问题,并在附录部分提供了近几年的高考试卷。

在每节的内容中,先是对方法或者问题进行综合性的叙述,再以三种题组的形式出现。再现性题组是一组简单的选择填空题进行方法的再现,示范性题组进行详细的解答和分析,对方法和问题进行示范。巩固性题组旨在检查学习的效果,起到巩固的作用。每个题组中习题的选取,又尽量综合到代数、三角、几何几个部分重要章节的数学知识。

高中数学的四大解题思想?满意采纳

山西省朔州市平鲁区李林中学 刘娟娟数学是研究现实世界中数量关系和空间形成的一门科学。随着科学技术的不断发展,数学也从原始形态的数量关系向抽象化的数量关系发展。在发展的过程中,不仅建立了严密的理论体系,而且形成了一整套的数学思想方法。本文结合有关的例题,对数学中常用的几种思想方法作一番探讨。一、数形结合的思想方法数形结合思想方法就是把抽象的数学符号语言和直观的几何图形联系起来,把抽象思维与形象思维相结合,通过“以形助数” 、“以数解形” ,使抽象问题具体化,复杂问题简单化,从而达到解答目的。数形结合应用甚广,不仅在解选择题、填空题中显示它的优越性,而且在解某些抽象数学问题时也起到事半功倍的效果。“以数解形” 是解析几何的主线,“以形助数” 是数形结合的研究重点。如何“以数转形”是数形结合的关键,图解法是数形结合的具体体现。数形结合是近年中、高考重点考查的思想方法之一。下面我们结合下面的例子作简单的分析:例1. 已知 0<a<1,则方程的实根个数为( )A. 1个 B. 2个 C. 3个 D. 1个或2个或3个分析: 判断方程根的个数就是判断图像两个函数图像,易知两图象只有两个交点,故方程有2个实根,选(B)。二、函数思想方法函数思想是数学思想的重要组成部分,在高中数学中起到横向联系和纽带连结的主干作用。用变量和函数来思考问题的方法就是函数思想。这是一种运动变化和相依关系,以一种状态确定地刻划另一种状态,把它们过渡到研究变化过程的思想方法。函数思想是函数概念、性质等知识更高层次的提炼和概括,是知识和方法在反复学习与运用中抽象出来的,且带有观念性的指导方法。函数的思想就是用运动和变化的观点,分析和研究数学问题。具体来说,即先构造函数,把给定问题转化为研究函数的性质(单调性、奇偶性、周期性、图象的交点个数、最值、极值等)问题,研究后得出所需要的结论。上面的例1和例2也可以说阐述了这个观点。而函数方程思想就是将数学问题转化为方程或方程组问题,通过解方程(组)或者运用方程的性质来分析、转化问题,使问题得以解决。必有两个不相等的实根。分析:此题若用常规解法,求出判别式△是一个关于a 的一元四次多项式,符号不易判断。若用函数思想去分析题意,设函数,要证明命题成立,只需证明函数的图象与 轴有两个交点,由于它的开口向上,只要找到一个实数,使即可。比如。故函数的图象与 轴有两个交点,因此命题成立。三、转化思想人们在长期的实践中,积累了丰富的经验,许多数学问题的解决形成固定的方法模式和程序,我们把这种既定方法和程序的问题称为规范问题。运用某些方法或手段,把一个陌生的、复杂的数学问题转化归结为所熟知的、简单的规范性数学问题来解决的思想方法称为转化思想方法。转化的原则是化陌生为熟知,化繁杂为简单,且转化后的问题与原问题等价。数形结合的思想方法和函数的思想方法都是转化思想方法的具体表现。数学中转化的途径是多样的,有正面与反面的相互转化,有数与形的相互转化,有客与主的相互转化,有特殊与一般的相互转化,有升维与降维的相互转化等,总之是要将较难解决的问题转化为易解决的基本问题。提倡立体思维,善于从多角度、多方位和多层次去审视问题,另辟蹊径是我们解决问题的最好方法。1.求代数式的值这类问题经常是给出一个已知方程或代数式的值,去求另外一个代数式的值,解决的方法是从已知条件出发,将已知条件向所要求的结论转化或者将所要求的目标向已知条件转化,从而达到解决问题的目的。本例通过一个命题的题设与结论的转化,使他们之间的关系进一步明朗化,从而解决了问题。2.将函数思想转化为方程(组)问题通过以上几例,我们可以看到解数学问题的时候,如果能恰当合理地把问题转化,则能启迪思维,简洁巧妙地解决问题,同时也能加强学生的数学思想方法的培养。总之,上述的三种数学思想方法(即数形结合、函数思想和转化思想),在解决数学问题中具有举足轻重的作用,它不仅可以把一些直接无法解决或陌生的问题转化为易于解决,熟悉的问题来解,而且可以培养学生思维的发散性,灵活性,敏捷性。因此,数学教师在教学工作中,应当长期不断地夯实学生的数学基础,训练学生的基本解题技能,加强培养学生的数学思想思维。只有这样,才能使学生得心应手地运用数学思想方法,也只有这样,往往使运算简捷,推理机敏严密,同时大大提高了学生分析数学问题和解决数学问题的能力。

高中做竞赛或者其他题所用到的数学思想有哪些

数学四大思想:函数与方程、转化与化归、分类讨论、数形结合;

函数与方程

函数思想,是指用函数的概念和性质去分析问题、转化问题和解决问题。方程思想,是从问题的数量关系入手,运用数学语言将问题中的条件转化为数学模型(方程、不等式、或方程与不等式的混合组),然后通过解方程(组)或不等式(组)来使问题获解。有时,还实现函数与方程的互相转化、接轨,达到解决问题的目的。

笛卡尔的方程思想是:实际问题→数学问题→代数问题→方程问题。宇宙世界,充斥着等式和不等式。我们知道,哪里有等式,哪里就有方程;哪里有公式,哪里就有方程;求值问题是通过解方程来实现的……等等;不等式问题也与方程是近亲,密切相关。而函数和多元方程没有什么本质的区别,如函数y=f(x),就可以看作关于x、y的二元方程f(x)-y=0。可以说,函数的研究离不开方程。列方程、解方程和研究方程的特性,都是应用方程思想时需要重点考虑的。

函数描述了自然界中数量之间的关系,函数思想通过提出问题的数学特征,建立函数关系型的数学模型,从而进行研究。它体现了“联系和变化”的辩证唯物主义观点。一般地,函数思想是构造函数从而利用函数的性质解题,经常利用的性质是:f(x)、f (x)的单调性、奇偶性、周期性、最大值和最小值、图像变换等,要求我们熟练掌握的是一次函数、二次函数、幂函数、指数函数、对数函数、三角函数的具体特性。在解题中,善于挖掘题目中的隐含条件,构造出函数解析式和妙用函数的性质,是应用函数思想的关键。对所给的问题观察、分析、判断比较深入、充分、全面时,才能产生由此及彼的联系,构造出函数原型。另外,方程问题、不等式问题和某些代数问题也可以转化为与其相关的函数问题,即用函数思想解答非函数问题。

函数知识涉及的知识点多、面广,在概念性、应用性、理解性都有一定的要求,所以是高考中考查的重点。我们应用函数思想的几种常见题型是:遇到变量,构造函数关系解题;有关的不等式、方程、最小值和最大值之类的问题,利用函数观点加以分析;含有多个变量的数学问题中,选定合适的主变量,从而揭示其中的函数关系;实际应用问题,翻译成数学语言,建立数学模型和函数关系式,应用函数性质或不等式等知识解答;等差、等比数列中,通项公式、前n项和的公式,都可以看成n的函数,数列问题也可以用函数方法解决。

等价转化

等价转化是把未知解的问题转化到在已有知识范围内可解的问题的一种重要的思想方法。通过不断的转化,把不熟悉、不规范、复杂的问题转化为熟悉、规范甚至模式法、简单的问题。历年高考,等价转化思想无处不见,我们要不断培养和训练自觉的转化意识,将有利于强化解决数学问题中的应变能力,提高思维能力和技能、技巧。 转化有等价转化与非等价转化。等价转化要求转化过程中前因后果是充分必要的,才保证转化后的结果仍为原问题的结果。非等价转化其过程是充分或必要的,要对结论进行必要的修正(如无理方程化有理方程要求验根),它能给人带来思维的闪光点,找到解决问题的突破口。我们在应用时一定要注意转化的等价性与非等价性的不同要求,实施等价转化时确保其等价性,保证逻辑上的正确。

著名的数学家,莫斯科大学教授C.A.雅洁卡娅曾在一次向数学奥林匹克参赛者发表《什么叫解题》的演讲时提出:“解题就是把要解题转化为已经解过的题”。数学的解题过程,就是从未知向已知、从复杂到简单的化归转换过程。

等价转化思想方法的特点是具有灵活性和多样性。在应用等价转化的思想方法去解决数学问题时,没有一个统一的模式去进行。它可以在数与数、形与形、数与形之间进行转换;它可以在宏观上进行等价转化,如在分析和解决实际问题的过程中,普通语言向数学语言的翻译;它可以在符号系统内部实施转换,即所说的恒等变形。消去法、换元法、数形结合法、求值求范围问题等等,都体现了等价转化思想,我们更是经常在函数、方程、不等式之间进行等价转化。可以说,等价转化是将恒等变形在代数式方面的形变上升到保持命题的真假不变。由于其多样性和灵活性,我们要合理地设计好转化的途径和方法,避免死搬硬套题型。

在数学操作中实施等价转化时,我们要遵循熟悉化、简单化、直观化、标准化的原则,即把我们遇到的问题,通过转化变成我们比较熟悉的问题来处理;或者将较为繁琐、复杂的问题,变成比较简单的问题,比如从超越式到代数式、从无理式到有理式、从分式到整式…等;或者比较难以解决、比较抽象的问题,转化为比较直观的问题,以便准确把握问题的求解过程,比如数形结合法;或者从非标准型向标准型进行转化。按照这些原则进行数学操作,转化过程省时省力,有如顺水推舟,经常渗透等价转化思想,可以提高解题的水平和能力。

分类讨论

在解答某些数学问题时,有时会遇到多种情况,需要对各种情况加以分类,并逐类求解,然后综合得解,这就是分类讨论法。分类讨论是一种逻辑方法,是一种重要的数学思想,同时也是一种重要的解题策略,它体现了化整为零、积零为整的思想与归类整理的方法。有关分类讨论思想的数学问题具有明显的逻辑性、综合性、探索性,能训练人的思维条理性和概括性,所以在高考试题中占有重要的位置。

引起分类讨论的原因主要是以下几个方面:

① 问题所涉及到的数学概念是分类进行定义的。如|a|的定义分a>0、a=0、a<0三种情况。这种分类讨论题型可以称为概念型。

② 问题中涉及到的数学定理、公式和运算性质、法则有范围或者条件限制,或者是分类给出的。如等比数列的前n项和的公式,分q=1和q≠1两种情况。这种分类讨论题型可以称为性质型。

③ 解含有参数的题目时,必须根据参数的不同取值范围进行讨论。如解不等式ax>2时分a>0、a=0和a<0三种情况讨论。这称为含参型。

另外,某些不确定的数量、不确定的图形的形状或位置、不确定的结论等,都主要通过分类讨论,保证其完整性,使之具有确定性。

进行分类讨论时,我们要遵循的原则是:分类的对象是确定的,标准是统一的,不遗漏、不重复,科学地划分,分清主次,不越级讨论。其中最重要的一条是“不漏不重”。

解答分类讨论问题时,我们的基本方法和步骤是:首先要确定讨论对象以及所讨论对象的全体的范围;其次确定分类标准,正确进行合理分类,即标准统一、不漏不重、分类互斥(没有重复);再对所分类逐步进行讨论,分级进行,获取阶段性结果;最后进行归纳小结,综合得出结论。

数形结合

中学数学的基本知识分三类:一类是纯粹数的知识,如实数、代数式、方程(组)、不等式(组)、函数等;一类是关于纯粹形的知识,如平面几何、立体几何等;一类是关于数形结合的知识,主要体现是解析几何。

数形结合是一个数学思想方法,包含“以形助数”和“以数辅形”两个方面,其应用大致可以分为两种情形:或者是借助形的生动和直观性来阐明数之间的联系,即以形作为手段,数为目的,比如应用函数的图像来直观地说明函数的性质;或者是借助于数的精确性和规范严密性来阐明形的某些属性,即以数作为手段,形作为目的,如应用曲线的方程来精确地阐明曲线的几何性质。

恩格斯曾说过:“数学是研究现实世界的量的关系与空间形式的科学。”数形结合就是根据数学问题的条件和结论之间的内在联系,既分析其代数意义,又揭示其几何直观,使数量关的精确刻划与空间形式的直观形象巧妙、和谐地结合在一起,充分利用这种结合,寻找解题思路,使问题化难为易、化繁为简,从而得到解决。“数”与“形”是一对矛盾,宇宙间万物无不是“数”和“形”的矛盾的统一。华罗庚先生说过:数缺形时少直观,形少数时难入微,数形结合百般好,隔裂分家万事休。

数形结合的思想,其实质是将抽象的数学语言与直观的图像结合起来,关键是代数问题与图形之间的相互转化,它可以使代数问题几何化,几何问题代数化。在运用数形结合思想分析和解决问题时,要注意三点:第一要彻底明白一些概念和运算的几何意义以及曲线的代数特征,对数学题目中的条件和结论既分析其几何意义又分析其代数意义;第二是恰当设参、合理用参,建立关系,由数思形,以形想数,做好数形转化;第三是正确确定参数的取值范围。

高中数学学习技巧。

希望对你有帮助,祝学习更进一步!

思想方法篇

一、函数方程思想

函数方程思想就是用函数、方程的观点和方法处理变量或未知数之间的关系,从而解决问题的一种思维方式,是很重要的数学思想.1.函数思想:把某变化过程中的一些相互制约的变量用函数关系表达出来,并研究这些量间的相互制约关系,最后解决问题,这就是函数思想;2.应用函数思想解题,确立变量之间的函数关系是一关键步骤,大体可分为下面两个步骤:(1)根据题意建立变量之间的函数关系式,把问题转化为相应的函数问题;(2)根据需要构造函数,利用函数的相关知识解决问题;(3)方程思想:在某变化过程中,往往需要根据一些要求,确定某些变量的值,这时常常列出这些变量的方程或(方程组),通过解方程(或方程组)求出它们,这就是方程思想;3.函数与方程是两个有着密切联系的数学概念,它们之间相互渗透,很多方程的问题需要用函数的知识和方法解决,很多函数的问题也需要用方程的方法的支援,函数与方程之间的辩证关系,形成了函数方程思想.二、数形结合思想数形结合是中学数学中四种重要思想方法之一,对于所研究的代数问题,有时可研究其对应几何的性质使问题得以解决(以形助数);或者对于所研究的几何问题,可借助于对应图形的数量关系使问题得以解决(以数助形),这种解决问题的方法称之为数形结合.1.数形结合与数形转化的目的是为了发挥形的生动性和直观性,发挥数的思路的规范性与严密性,两者相辅相成,扬长避短.2.恩格斯是这样来定义数学的:“数学是研究现实世界的量的关系与空间形式的科学”.这就是说:数形结合是数学的本质特征,宇宙间万事万物无不是数和形的和谐的统一.因此,数学学习中突出数形结合思想正是充分把握住了数学的精髓和灵魂.3.数形结合的本质是:几何图形的性质反映了数量关系,数量关系决定了几何图形的性质.4.华罗庚先生曾指出:“数缺性时少直观,形少数时难入微;数形结合百般好,隔裂分家万事非.”数形结合作为一种数学思想方法的应用大致分为两种情形:或借助于数的精确性来阐明形的某些属性,或者借助于形的几何直观性来阐明数之间的某种关系.5.把数作为手段的数形结合主要体现在解析几何中,历年高考的解答题都有关于这个方面的考查(即用代数方法研究几何问题).而以形为手段的数形结合在高考客观题中体现.6.我们要抓住以下几点数形结合的解题要领:(1) 对于研究距离、角或面积的问题,可直接从几何图形入手进行求解即可;(2) 对于研究函数、方程或不等式(最值)的问题,可通过函数的图象求解(函数的零点,顶点是关键点),作好知识的迁移与综合运用;(3) 对于以下类型的问题需要注意: 可分别通过构造距离函数、斜率函数、截距函数、单位圆x2+y2=1上的点 及余弦定理进行转化达到解题目的.三、分类讨论的数学思想分类讨论是一种重要的数学思想方法,当问题的对象不能进行统一研究时,就需要对研究的对象进行分类,然后对每一类分别研究,给出每一类的结果,最终综合各类结果得到整个问题的解答.1.有关分类讨论的数学问题需要运用分类讨论思想来解决,引起分类讨论的原因大致可归纳为如下几种:(1)涉及的数学概念是分类讨论的;(2)运用的数学定理、公式、或运算性质、法则是分类给出的;(3)求解的数学问题的结论有多种情况或多种可能性;(4)数学问题中含有参变量,这些参变量的不同取值导致不同的结果的;(5)较复杂或非常规的数学问题,需要采取分类讨论的解题策略来解决的.2.分类讨论是一种逻辑方法,在中学数学中有极广泛的应用.根据不同标准可以有不同的分类方法,但分类必须从同一标准出发,做到不重复,不遗漏 ,包含各种情况,同时要有利于问题研究.四、化归与转化思想所谓化归思想方法,就是在研究和解决有关数学问题时采用某种手段将问题通过变换使之转化,进而达到解决的一种方法.一般总是将复杂的问题通过变化转化为简单的问题,将难解问题通过变换转化为容易求解的问题,将未解决的问题转化为已解决的问题.立体几何中常用的转化手段有1.通过辅助平面转化为平面问题,把已知元素和未知元素聚集在一个平面内,实现点线、线线、线面、面面位置关系的转化;2.平移和射影,通过平移或射影达到将立体几何问题转化为平面问题,化未知为已知的目的;3.等积与割补;4.类比和联想;5.曲与直的转化;6.体积比,面积比,长度比的转化;7.解析几何本身的创建过程就是“数”与“形”之间互相转化的过程.解析几何把数学的主要研究对象数量关系与几何图形联系起来,把代数与几何融合为一体.二、中学数学常用解题方法1.配方法配方法是指将一代数形式变形成一个或几个代数式平方的形式,其基本形式是:ax2+bx+c= .高考中常见的基本配方形式有:(1)a2+b2= (a + b)2- 2a b = (a -b) 2+ 2 ab; (2)(2) a2+ b2+ ab = ; (3)(3)a2+ b2+c2= (a+b + c)2- 2 ab – 2 a c – 2 bc; (4) (4) a2+ b2+ c2- a b – bc – a c = [ ( a - b)2 + (b - c)2 + (a - c)2]; (5) ;配方法主要适用于与二次项有关的函数、方程、等式、不等式的讨论,求解与证明及二次曲线的讨论.2.待定系数法一 待定系数法是把具有某种确定性时的数学问题,通过引入一些待定的系数,转化为方程组来解决.待定系数法的主要理论依据是:(1)多项式f(x)=g(x)的充要条件是:对于任意一个值a,都有f(a)=g(a);(2)多项式f(x) ≡g(x)的充要条件是:两个多项式各同类项的系数对应相等;二 运用待定系数法的步骤是:(1)确定所给问题含待定系数的解析式(或曲线方程等);(2)根据恒等条件,列出一组含待定系数的方程; (3)解方程或消去待定系数,从而使问题得到解决;三 待定系数法主要适用于:求函数的解析式,求曲线的方程,因式分解等.3.换元法换元法是指引入一个或几个新的变量代替原来的某些变量(或代数式),对新的变量求出结果之后,返回去求原变量的结果.换元法通过引入新的元素将分散的条件联系起来,或者把隐含的条件显示出来,或者把条件与结论联系起来,或者变为熟悉的问题.其理论根据是等量代换.高中数学中换元法主要有以下两类:(1)整体换元:以“元”换“式”; (2)三角换元 ,以“式”换“元”;(3)此外,还有对称换元、均值换元、万能换元等;换元法应用比较广泛.如解方程,解不等式,证明不等式,求函数的值域,求数列的通项与和等,另外在解析几何中也有广泛的应用.运用换元法解题时要注意新元的约束条件和整体置换的策略.4.向量法向量法是运用向量知识解决问题的一种方法,解题常用下列知识:(1)向量的几何表示,两个向量共线的充要条件;(2)平面向量基本定理及其理论;(3)利用向量的数量积处理有关长度、角度和垂直的问题;(4)两点间距离公式、线段的定比分点公式、平移公式;5.分析法、综合法(1)分析法是从所求证的结果出发,逐步推出能使它成立的条件,直至已知的事实为止;分析法是一种“执果索因”的直接证法.(2)综合法是从已经证明的结论、公式出发,逐步推出所要求证的结论.综合法是一种“由因导果”,叙述流畅的直接证法.(3)分析法、 综合法是证明数学问题的两大最基本的方法.分析法“执果索因”的分析方法,思路清晰,容易找到解题路子,但书写格式要求较高,不容易叙述清楚,所以分析法、综合法常常交替使用.分析法、 综合法应用很广,几乎所有题都可以用这两个方法来解.6.反证法反证法是数学证明的一种重要方法,因为命题p与它的否定非p的真假相反,所以要证一个命题为真,只要证它的否定为假即可.这种从证明矛盾命题(即命题的否定)为假进而证明命题为真的证明方法叫做反证法.一 反证法证明的一般步骤是:(1)反设:假设命题的结论不成立,即假设结论的反面成立;(2)归谬:从命题的条件和所作的结论出发,经过正确的推理论证,得出矛盾的结果;(3)结论:有矛盾判定假设不正确,从而肯定的结论正确;二 反证法的适用范围:(1)已知条件很少或由已知条件能推得的结论很少时的命题;(2)结论的反面是比原结论更具体、更简单的命题,特别是结论是否定形式(“不是”、“不可能”、“不可得”)等的命题;(3)涉及各种无限结论的命题;(4)以“最多(少)、若干个”为结论的命题;(5)存在性命题;(6)唯一性命题;(7)某些定理的逆定理;(8)一般关系不明确或难于直接证明的不等式等.三 反证法的逻辑依据是“矛盾律”和“排中律”.7.另外:还有数学归纳法、同一法、整体代换法等.

高考数学大题的解题技巧及解题思想

主要包括化简、求值、方程、不等式、函数等题,基本思路是:把含绝对值的问题转化为不含绝对值的问题。

具体转化方法有:

①分类讨论法:根据绝对值符号中的数或式子的正、零、负分情况去掉绝对值。

②零点分段讨论法:适用于含一个字母的多个绝对值的情况。

③两边平方法:适用于两边非负的方程或不等式。

④几何意义法:适用于有明显几何意义的情况。

根据项数选择方法和按照一般步骤是顺利进行因式分解的重要技巧。因式分解的一般步骤是:

提取公因式

选择用公式

十字相乘法

分组分解法

拆项添项法

利用完全平方公式把一个式子或部分化为完全平方式就是配方法,它是数学中的重要方法和技巧。配方法的主要根据有:

解某些复杂的特型方程要用到“换元法”。换元法解方程的一般步骤是:

设元→换元→解元→还元

待定系数法是在已知对象形式的条件下求对象的一种方法。适用于求点的坐标、函数解析式、曲线方程等重要问题的解决。其解题步骤是:①设 ②列 ③解 ④写

复杂代数等式型条件的使用技巧:左边化零,右边变形。

①因式分解型:

(-----)(----)=0 两种情况为或型

②配成平方型:

(----)2+(----)2=0 两种情况为且型

(1)求值的思路列欲求值字母的方程或方程组

(2)求取值范围的思路列欲求范围字母的不等式或不等式组

基本思路是:把√m化成完全平方式。即:

方法有:

(1)直接代入法

(2)化简代入法

(3)适当变形法(和积代入法)

注意:当求值的代数式是字母的“对称式”时,通常可以化为字母“和与积”的形式,从而用“和积代入法”求值。

方程中除过未知数以外,含有的其它字母叫参数,这种方程叫含参方程。解含参方程一般要用‘分类讨论法’,其原则是:

(1)按照类型求解

(2)根据需要讨论

(3)分类写出结论

(1)ax+b=0对于任意x都成立关于x的方程ax+b=0有无数个解a=0且b=0。

(2)ax2+bx+c=0对于任意x都成立关于x的方程ax2+bx+c=0有无数解a=0、b=0、c=0。

由一元二次不等式解集为R的有关结论容易得到下列恒不等成立的条件:

图像的平移规律是研究复杂函数的重要方法。平移规律是:

讨论函数性质的重要方法是图像法——看图像、得性质。

定义域?图像在X轴上对应的部分

值 域?图像在Y轴上对应的部分

单调性?从左向右看,连续上升的一段在X轴上对应的区间是增区间;从左向右看,连续下降的一段在X轴上对应的区间是减区间。

最 值?图像最高点处有最大值,图像最低点处有最小值

奇偶性?关于Y轴对称是偶函数,关于原点对称是奇函数

方程的根

函数图像与x轴交点横坐标

不等式解集端点

一元二次不等式可以用因式分解转化为二元一次不等式组去解,但比较复杂;它的简便的实用解法是根据“三个二次”间的关系,利用二次函数的图像去解。具体步骤如下:

二次化为正

判别且求根

画出示意图

解集横轴中

一元二次方程根的符号问题或m型问题可以利用根的判别式和根与系数的关系来解决,但根的一般问题、特别是区间根的问题要根据“三个二次”间的关系,利用二次函数的图像来解决。“图像法”解决一元二次方程根的问题的一般思路是:

题意

二次函数图像

不等式组

不等式组包括:a的符号;△的情况;对称轴的位置;区间端点函数值的符号。

我们学过的一次函数、反比例函数、二次函数等有名称的函数是基本函数。基本函数求值域或最值有两种情况:

(1)定义域没有特别限制时---记忆法或结论法;

(2)定义域有特别限制时---图像截断法,一般思路是:

画出图像

截出一断

得出结论

应用题中,涉及“一个变量取什么值时另一个变量取得最大值或最小值”的问题是最值型应用题。解决最值型应用题的基本思路是函数思想法,其解题步骤是:

设变量

列函数

求最值

写结论

穿线法是解高次不等式和分式不等式的最好方法。其一般思路是:

首项化正

求根标根

右上起穿

奇穿偶回

注意:①高次不等式首先要用移项和因式分解的方法化为“左边乘积、右边是零”的形式。②分式不等式一般不能用两边都乘去分母的方法来解,要通过移项、通分合并、因式分解的方法化为“商零式”,用穿线法解。

解题技巧

 一、三角函数题

 注意归一公式、诱导公式的正确性(转化成同名同角三角函数时,套用归一公式、诱导公式(奇变、偶不变;符号看象限)时,很容易因为粗心,导致错误!一着不慎,满盘皆输!)。

 二、数列题

 1.证明一个数列是等差(等比)数列时,最后下结论时要写上以谁为首项,谁为公差(公比)的等差(等比)数列;

 2.最后一问证明不等式成立时,如果一端是常数,另一端是含有n的式子时,一般考虑用放缩法;如果两端都是含n的式子,一般考虑数学归纳法(用数学归纳法时,当n=k+1时,一定利用上n=k时的假设,否则不正确。利用上假设后,如何把当前的式子转化到目标式子,一般进行适当的放缩,这一点是有难度的。简洁的方法是,用当前的式子减去目标式子,看符号,得到目标式子,下结论时一定写上综上:由①②得证;

 3.证明不等式时,有时构造函数,利用函数单调性很简单(所以要有构造函数的意识)。

 三、立体几何题

 1.证明线面位置关系,一般不需要去建系,更简单;

 2.求异面直线所成的角、线面角、二面角、存在性问题、几何体的高、表面积、体积等问题时,要建系;

 3.注意向量所成的角的余弦值(范围)与所求角的余弦值(范围)的关系(符号问题、钝角、锐角问题)。

 四、概率问题

 1.搞清随机试验包含的所有基本事件和所求事件包含的基本事件的个数;

 2.搞清是什么概率模型,套用哪个公式;

 3.记准均值、方差、标准差公式;

 4.求概率时,正难则反(根据p1+p2+...+pn=1);

 5.注意计数时利用列举、树图等基本方法;

 6.注意放回抽样,不放回抽样;

 7.注意“零散的”的知识点(茎叶图,频率分布直方图、分层抽样等)在大题中的渗透;

 8.注意条件概率公式;

 9.注意平均分组、不完全平均分组问题。

 五、圆锥曲线问题

 1.注意求轨迹方程时,从三种曲线(椭圆、双曲线、抛物线)着想,椭圆考得最多,方法上有直接法、定义法、交轨法、参数法、待定系数法;

 2.注意直线的设法(法1分有斜率,没斜率;法2设x=my+b(斜率不为零时),知道弦中点时,往往用点差法);注意判别式;注意韦达定理;注意弦长公式;注意自变量的取值范围等等;

 3.战术上整体思路要保7分,争9分,想12分。

 六、导数、极值、最值、不等式恒成立(或逆用求参)问题

 1.先求函数的定义域,正确求出导数,特别是复合函数的导数,单调区间一般不能并,用“和”或“,”隔开(知函数求单调区间,不带等号;知单调性,求参数范围,带等号);

 2.注意最后一问有应用前面结论的意识;

 3.注意分论讨论的思想;

 4.不等式问题有构造函数的意识;

 5.恒成立问题(分离常数法、利用函数图像与根的分布法、求函数最值法);

 6.整体思路上保6分,争10分,想14分。

 解题思想

 1.函数与方程思想

 函数思想是指运用运动变化的观点,分析和研究数学中的数量关系,通过建立函数关系运用函数的图像和性质去分析问题、转化问题和解决问题;方程思想,是从问题的数量关系入手,运用数学语言将问题转化为方程或不等式模型去解决问题。同学们在解题时可利用转化思想进行函数与方程间的相互转化。

 2.数形结合思想

 中学数学研究的对象可分为两大部分,一部分是数,一部分是形,但数与形是有联系的,这个联系称之为数形结合或形数结合。它既是寻找问题解决切入点的“法宝”,又是优化解题途径的“良方”,因此建议同学们在解答数学题时,能画图的尽量画出图形,以利于正确地理解题意、快速地解决问题。

 3.特殊与一般的思想

 用这种思想解选择题有时特别有效,这是因为一个命题在普遍意义上成立时,在其特殊情况下也必然成立,根据这一点,同学们可以直接确定选择题中的正确选项。不仅如此,用这种思想方法去探求主观题的求解策略,也同样有用。

 4.极限思想解题步骤

 极限思想解决问题的一般步骤为:一、对于所求的未知量,先设法构思一个与它有关的变量;二、确认这变量通过无限过程的结果就是所求的未知量;三、构造函数(数列)并利用极限计算法则得出结果或利用图形的极限位置直接计算结果。

 5.分类讨论思想

 同学们在解题时常常会遇到这样一种情况,解到某一步之后,不能再以统一的方法、统一的式子继续进行下去,这是因为被研究的对象包含了多种情况,这就需要对各种情况加以分类,并逐类求解,然后综合归纳得解,这就是分类讨论。引起分类讨论的原因很多,数学概念本身具有多种情形,数*算法则、某些定理、公式的限制,图形位置的不确定性,变化等均可能引起分类讨论。建议同学们在分类讨论解题时,要做到标准统一,不重不漏。

文章标签: # 问题 # 思想 # 数学